A chemical structures of compounds A-D used to-weave the crystalline patches by Dr. Panče Naumov, Material Scientist, NYU Abu Dhabi, USA

Panče Naumov教授和张红雨教授研究团队联合开发出首款柔性有机晶体的编织材料

Self portrait by Dr. Panče Naumov, Material Scientist, NYU Abu Dhabi, USA
Dr. Panče Naumov, Image credit: NYU Abu Dhabi

Panče Naumov教授和张红雨教授研究团队联合开发出首款柔性有机晶体的编织材料

美国纽约大学阿布扎比分校智能工程材料中心及智能材料实验室的Panče Naumov教授和中国吉林大学超分子结构与材料国家重点实验室的张红雨教授及其研究团队在智慧材料领域又取得了令人瞩目的突破,他们开发出了首款完全由柔性有机晶体制成的编织材料。这项创新性的工作最近发表在《自然通讯》上,它将传统的一维晶体转化为坚固而灵活的二维结构。这种材料的强度比原始晶体高出15倍,而且在极低温度下也能保持其灵活性,在柔性电子和太空探索领域应用具有巨大的潜力。

A chemical structures of compounds A-D used to-weave the crystalline patches by Dr. Panče Naumov, Material Scientist, NYU Abu Dhabi, USA
A chemical structures of compounds A-D used to-weave the crystalline patches, Image credit: Dr. Panče Naumov

这项研究代表了对有机晶体的理解发生了重大转变,因为传统上人们认为有机晶体是硬而脆的材料。该团队采用了一种创新的方法,将晶体编织成各种纹理,如平纹、斜纹和缎纹,从而产生了一种轻便但机械强大、在广泛温度范围内都表现出热稳定性的织物。这些性能超越了许多传统聚合物和弹性体材料。此外,这种材料的光学透明度为光学计算开辟了新的可能性,研究人员成功地使用这些编织晶体进行简单的逻辑功能实现。

该团队创造性地将历史悠久的编织技术应用在了晶体上。将细长的晶体结构编织成二维织物显著增强了其机械稳定性和坚固性。虽然在可扩展性方面仍然存在挑战,尤其是在选择均匀尺寸的晶体进行编织方面,但未来的自动化可能会简化这一过程,增强这项技术的实际应用。不同编织模式(如平纹、斜纹和缎纹)的机械强度差异也揭示了基于编织方法的多样化应用潜力。这些编织有机晶体在柔性电子和太空探索等领域具有巨大的应用前景。它们对低温和机械冲击的抵抗力,以及编织结构内的协同作用增强,使其具有独到的应用有价值。这项工作是与中国吉林大学长期合作的一部分,在该合作中采用常见的化学方法,已经开发了多种荧光特性的多样化材料库,增强了它们在各种应用中的实用性。编织有机晶体技术的发展标志着材料科学领域的一个重要里程碑。它挑战了人们对晶体作为刚性和不灵活物质的传统看法,揭示了它们作为适应性强、柔韧材料的潜力。这一突破不仅拓宽了它们在柔性电子产品以及其他需要柔韧材料的应用领域的前景,而且预示着材料科学的一个新时代。在这个新时代,柔性与结构的完美融合为技术进步开辟了新的前沿,巩固了这些创新材料在未来科学和技术创新中的重要角色。

Naumov教授的研究重点是智能材料,他的实验室在众多著名出版物中发表了很多智能材料研究工作,包括智能晶体和与石油化学相关的材料。这些智能材料对外部刺激(如光、热和机械力)做出响应,具有独特的特性,如耐用性、自我修复和适应性。他对这些材料的研究兴趣源于它们能够转换能量。这些晶体的动态响应能力也得到了广泛的研究,它们对外部刺激的适应性是一个显著特点,突显了材料属性与基本物理原理之间的相互关系。这个研究不仅推动了我们对智能材料的理解,还强调了基本物理原理在现代科学研究中的重要性。

向Panče Naumov教授和张红雨教授团队表示感谢,他们的工作为这一领域的进展作出了重要贡献。