里斯.格林特博士(Dr. Rhys Grinter)和其研究团队发现的“天然电池酶”,可将空气转化为电能
Self portrait, Courtesy: Monash University, Australia 里斯.格林特博士(Dr. Rhys Grinter)和其研究团队发现的“天然电池酶”,可将空气转化为电能 澳大利亚墨尔本莫纳什大学生物医学发现研究所的里斯.格林特博士(Dr. Rhys Grinter)、Ashleigh Kropp博士生和Chris Greening教授最近在《自然》杂志上发表的一篇文章表明,他们发现了一种酶能够利用空气中的少量氢气来产生电流。这种名为Huc的酶是由研究人员从一种名为耻垢分枝杆菌(Mycobacterium smegmatis)中所提取。格林特博士指出,这一突破性发现能为未来的细菌驱动设备,甚至汽车,提供动力。 根据格林特博士,这一发现所以令人兴奋,是因为Huc酶可消耗低于大气水平的氢气,低至人类呼吸的空气的0.00005%。此外,它可以在有氧气的情况下发挥作用,而其他类型的酶在有氧气的情况下,却无法发挥作用。耻垢分枝杆菌很容易在实验室中繁殖,因此通过Huc酶可以实现稳定的电力利用。 在接下来的采访中,格林特博士不仅详细地解释了他的研究,还概述了这一发现在未来的应用途径,甚至包括如何在恶劣环境如火星上的应用。 问:根据最近在《自然》杂志上发表的文章,你们研究团队发现了一种能将空气转化为能源的酶,非常令人兴奋。首先,请与我们分享你的教育和培训背景。答:我在南澳大利亚袋鼠岛上一所人数不多的学校,接受初中和高中教育,然后于2005年在南澳大利亚阿德莱德的弗林德斯大学(Flinders University in Adelaide, South Australia)获得生物技术学士学位。休学几年后,我在英国的格拉斯哥大学攻读微生物学和结构生物学博士学位。在2015年完成博士学位后,我搬到了澳大利亚墨尔本的莫纳什大学,在那里作为博士后研究员的我,专注于研究分子水平上的细菌研究。 在2021年,我成立了自己的研究小组。 问:请告诉我们更多关于这篇发表在《自然》杂志上的惊人发现。答:我们从土壤细菌 – 耻垢分枝杆菌中分离出一种名为Huc的酶,这种酶可将空气中的氢转化为电流。此细菌利用这种酶将空气中的氢转化为能量,尤其是在其他食物来源有限的情况下。我们发现这种酶可以在大气浓度 (0.00005%) 下将氢气转化为电能,如果我们给它更多的氢气,它就会产生更多的能量。我们还表明,当存在氧气时,Huc也能发挥同样的作用,这令人兴奋,因为许多其他将氢转化为电能的分子在氧气存在的情况下不起作用。我们还使用先进的(低温电子)显微镜在原子水平上拍摄了Huc的3D照片。这些照片告诉了我们很多关于Huc如何将大气中的氢转化为电能的信息。 问:请告诉我们更多关于你开发的大气氢氧化的分子蓝图。从这个蓝图中,你还能得到什么?答:如上所述,我们使用先进的显微镜来观察Huc在原子尺度上的样子。这为我们提供了许多关于它如何将空气中的氢气转化为电能的线索。虽然要完全了解Huc的运作原理还有很多的工作要做,但我们可以利用这些信息使其性能更好,或者利用该蓝图,设计其他可以使用空气中的氢的酶或催化剂。 问:除了耻垢分枝杆菌, Huc酶可以从其他细菌中提取吗?它可以合成吗?答:许多土壤细菌会产生像Huc这样的酶。据估计,60%到80%的土壤细菌可以利用这些酶将空气中的氢气作为能源。这就是空气中氢气浓度很低的主要原因。然而,要制造大量的Huc,需要培养大量制造它的细菌。这对土壤细菌来说通常并不容易。我们用耻垢分枝杆菌来开展这项研究,因为我们可以容易地使用简单的酵母汤来大量繁殖耻垢分枝杆菌。 问:Huc与其他酶有何不同?造成这种差异的原因是什么?答:我们已经研究了许多其他可以将氢转化为电能的酶。然而,这些酶与Huc非常不同。当周围有氧气时,大多数这些酶都无法发挥作用,考虑到氧气占空气的21%,这意味著它们在空气中不起作用。重要的是,没有其他分离出的酶可以使用空气中那样低浓度的氢气。这使得分离Huc成为一项重大的发现,因为我们现在可以考虑使用它来发电。 问:这些细菌(耻垢分枝杆菌)在什么样的环境中生存;它们容易在实验室中培养吗?答:通常,这些细菌生活在土壤中,尽管耻垢分枝杆菌最初是从人体相当脆弱的部位分离出来的。它是一种适应性很强的细菌,所以它往往会出现在很多地方。它很容易在实验室中培养。你可以喂给它各种营养素。然而,我们通常在含有酵母提取物(啤酒酿造的副产品)和食盐(氯化钠)混合物的液体肉汤中培养它。它可以在烧瓶中,小体积(100 毫升到 10 升)或大容量发酵罐(15-100,000+ 升)中生长。 问:你使用的细菌会产生废物吗?答:一旦耻垢分枝杆菌生长出来,它就会从生长的液体中分离出来,剩下的液体即成为该过程的废物。这种废液无毒,可以使用标准的水处理程序进行处理,或者可以回收剩余的营养物以备将来使用。 问:你设想过什么样的细菌供电设备(例如电池)可以利用Huc吗?另外,可以利用这些细菌来大规模发电吗?答:由于空气中的氢气浓度很低,Huc只能为需要少量电力的设备提供动力。但是,它非常的稳定,这是一个优势。我们设想它可以用于生物识别监视器、环境传感器、时钟或小型计算机。然而,我们已经证明,如果你给Huc更多的氢气,它就会产生更多的电。如果将Huc结合到氢燃料电池中,这使Huc有可能为更大的设备提供动力,包括更复杂的计算机(例如智能手机或智能手表),甚至可能是汽车。 问:在火星这样没有氧气的环境中,这个方法还能用吗?答:这是一个很好的问题,要用氢气发电,你需要一个完整的电路,这意味著产生的电子需要去某个地方。在地球上,最方便将电子发送的化学物质是氧气,这项工作可以由另一种经过充分研究的酶来完成,从而产生水作为产物。通过快速网路搜索,火星上似乎没有太多的氢气。但是,太空中有很多氢气。如果我们能找到另一个分子将氢的电子提供给Huc,那么Huc就可以在那里产生能量。 问:除了这项研究,你还对哪些研究领域感兴趣?答:我的一般研究兴趣是了解生命,特别是细菌如何在分子水平上运作。除了Huc,我还在研究其他几种将空气中的气体转化为电能的酶,包括一种用一氧化碳进行转化的酶。我的实验室也在研究致病细菌在感染我们时,如何从我们的身体中窃取必需的营养铁。这里的想法是我们可以阻止这个过程来阻止细菌感染。我的实验室还致力于发现新的蛋白质抗生素作为治疗耐药抗生素细菌的下一代疗法。 ***** 我们感谢格林特博士详细回答了我们所提出的问题。他的突破性发现为许多未来应用铺平了道路。我们祝愿他在他的研究追求中取得圆满成功。
里斯.格林特博士(Dr. Rhys Grinter)和其研究团队发现的“天然电池酶”,可将空气转化为电能 Read More »