CHN

Inspired by desert species, these new Janus crystals efficiently collect water from fog, offering an energy-free solution to water scarcity (Artist's conception)

仿生智能晶体开创节能集水新技术

Dr. Panče Naumov, Image credit: NYU Abu Dhabi 仿生智能晶体开创节能集水新技术 在干旱地区,获取清洁水源变得日益困难,水资源短缺仍然是全球最紧迫的挑战之一。在一项突破性的研究中,科学家从大自然的集水机制中汲取灵感,特别是从沙漠甲虫和蜥蜴等生物身上得到启发,创造出了一种创新的解决方案。 来自中国吉林大学、美国纽约大学阿布扎比分校智能材料实验室以及纽约大学阿布扎比分校智能工程材料中心的研究团队开发了一种名为“双面晶体”(Janus crystals)的新型晶体材料。这种智能晶体无需能量输入即可从雾气中高效收集水分,模仿了沙漠生物的自然适应机制。 在美国纽约大学阿布扎比分校智能工程材料中心及智能材料实验室的Panče Naumov教授,以及中国吉林大学超分子结构与材料国家重点实验室的张红雨教授的带领下,研究团队成功设计出同时具有亲水和疏水区域的晶体,创造出一种在常温下能够自发运行的精密集水系统。与传统的高能耗海水淡化等制水方法相比,这种创新方法代表着重要进步,为干旱地区的水资源收集提供了潜在的可持续解决方案。研究团队在《美国化学学会志》发表的最新论文中详细介绍了这一研究成果。 Center for Smart Engineering Materials. Image Credit: NYU Abu Dhabi 近期,我们有幸采访了化学教授Panče Naumov博士,深入了解这项卓越的研究: 问:是什么启发了您们开发双面晶体?沙漠生物如何影响了您们的设计?答:我们的项目始于一个基本目标:为获取淡水寻找可持续的解决方案。我们与吉林大学在晶体材料方面的持续合作自然而然地发展到解决这个关键挑战,这在中东地区和全球都具有特殊意义。阿联酋目前约96%的饮用水依赖于海水淡化——这是一个高能耗过程,使用有问题的膜材料和被称为”永久化学物质”的含氟聚合物,这些物质使用后无法降解。 为了摆脱这些不可持续的方法,我们将注意力转向了一个未开发的资源:大气中的水分。我们意识到,通过使用合适的材料,我们可以从潮湿的空气中收集水分,而不需要承担与海水淡化相关的能源成本。 大自然通过沙漠生物的神奇适应性为我们提供了蓝图。例如,纳米比亚沙漠甲虫利用特殊的表面结构从雾中收集饮用水,这种结构结合了吸水和疏水区域。通过研究这些自然系统,我们开发出了模仿这些生物集水机制的双面晶体,创造出了一种节能的集水解决方案。这项研究成果展示了我们成功地将自然界经过时间检验的策略转化为工程材料。 问:您能描述构成双面晶体的具体有机化合物和结构吗?能解释一下它们各自是如何赋予晶体亲水和疏水特性,从而实现高效集水?答:双面晶体新概念的核心理念是复制某些沙漠生物体表现出的双面策略。这些生物依靠具有两种不同区域的表面生存——一个容易吸引水(亲水性),另一个排斥水(疏水性)。在我们的合成方法中,需要创造一种能有效模仿这种双重性的单一晶体材料。 为实现这一目标,我们从三种化学性质各异的化合物开始培养有机晶体。我们选择有机材料是因为它们重量轻、非聚合物性质,而且可能具有生物降解性,符合可持续发展的方向。关键步骤是通过硅烷化过程仅对晶体的一面进行疏水涂层处理,而另一面保持原有的天然亲水性。从本质上说,晶体的”双面”特性——以罗马双面神雅努斯命名——源于一面强烈吸引和凝结水蒸气,另一面则沿着疏水表面引导这些凝结的水滴流向收集点。 通过选择不同的有机化合物并应用这种半对半的改性方法,我们证明了这个概念适用于多种化学结构。最终得到了一个多功能、无需能量输入的集水平台,利用自然相变和双面特性高效捕获和输送大气中的水分。 问:您认为多大的晶体对于集水最有效?答:我们进行了广泛的研究,考察了晶体的尺寸、长宽比等因素,以及不同湿度水平和其他条件的影响。通常,我们使用长度从几毫米到几厘米的晶体。这个尺寸范围使晶体便于操作和处理,这对实验工作和潜在的实际应用都很重要。 这个尺寸范围的晶体往往具有细长的形状和较高的表面积体积比。这种构型提供了高效集水的关键优势——单位质量和体积的可用集水表面积较大。通过优化成分,我们成功制造出不仅重量轻、易于操作,而且集水效率很高的晶体。 问:您能否解释晶体上的亲水和疏水区域是如何协同工作的吗?是什么让您的方法变得”智能”?答:这些晶体采用独特的设计,在细长晶体结构的相对两面分别设置亲水和疏水区域。天然情况下,晶体表面具有较好的亲水性,我们通过在晶体的一半涂覆硅基涂层来创造疏水区域——这个过程可以简单到仅仅将晶体的一半浸入聚合物溶液中。 我们系统特别创新的地方在于它的自感知能力。这些晶体具有光学传导性,能像光波导一样通过全内反射在内部引导光线。通过从晶体一侧照射光线,我们可以实时监测集水过程。晶体-空气界面和晶体-水界面的光反射或散射模式不同,使我们能够追踪水滴何时附着和脱离表面。 我们在各种条件下测试了这个监测系统以确保其可靠性。展望未来,我们计划将这些晶体捆束在一起以增加收集表面积,并同时监测所有晶体。这将通过实时反馈实现水收集过程的自动优化,使我们的晶体成为真正的智能响应技术。 问:这些晶体的生命周期是如何?它们可以无限期使用吗?答:理论上,这些晶体可以无限期使用,因为它们不会溶于水。虽然我们仍需要进行长期寿命研究,但它们的有机成分特性允许持续使用。我们也在探索生物可降解材料的应用可能性——特别是在偏远地区,系统可以在预定时期后自然分解,不会留下有害的环境足迹。 问:与现有的大气集水方法相比,双面晶体的集水效率如何?答:我们的晶体在单位质量和单位面积的集水效率方面都创下了纪录。我们在论文中发表的对比研究显示,只有一种材料——一种聚合物网——的效率接近我们的晶体。然而,我们的晶体采用完全不同的原理,而且不含不可降解的塑料,考虑到目前对聚合物材料的环境担忧,这一点非常重要。论文中详细记录了效率数据,包括收集时间等指标。 Center for Smart Engineering Materials. Image Credit: NYU Abu Dhabi 问:将这项技术扩展到工业规模时,您是否预见到任何挑战?答:从实验室概念转化为完整的工业产品需要经历优化和工程改进阶段。作为化学家,我们提供了初始理念,但机械稳定性、运输过程中的耐久性、抗振性能和实际应用中的稳定表现等工程考量需要由专业人士来解决。我们希望工程师和行业专家能在我们的工作基础上,完善这个概念,最终开发出可靠、高效的大规模应用系统。 问:海水淡化需要大量能源,而您的方法则不需要。您能详细说明使用双面晶体相比传统海水淡化技术有什么优势吗?答:传统海水淡化是在逆转一个自然倾向的过程——盐在水中的溶解——这需要消耗大量能源。无论是加热水进行蒸馏,还是通过压力将水推过膜(反渗透),都存在固有的能源成本。即使尝试使用太阳能,也无法完全抵消这种能耗。 海水淡化还面临其他挑战:膜污染、化学清洗造成的环境足迹,以及高盐度卤水的处理问题。相比之下,我们的双面晶体依靠自然湿度波动工作,不需要外部能源输入。通过避免使用高压系统、加热和有害化学品,我们的方法减少了环境影响、能源消耗和长期生态损害。双面晶体代表着一种比传统海水淡化方法更清洁、更可持续的替代方案。 问:晶体收集的水在饮用前是否需要额外净化?答:凝结过程通过将水从气态转化为液态,自然而然地实现了水的净化,许多杂质会被留在后面。这个原理类似于实验室中通过蒸馏和凝结进行溶剂纯化。我们的目标是通过利用表面特性的组合来增强这个自然过程,实现直接、低能耗地从大气中获取相对纯净的饮用水,而无需额外处理。 问:您能描述一下参与这项研究的机构之间的合作以及其影响吗?答:我们与吉林大学的合作特别富有成效——在过去的四到五年里,我们共同发表了二十多篇论文。这种协同效应,加上我们的国际网络,帮助建立了有机晶体作为一类具有独特性能组合的新型材料的地位。我们研究的重要性通过最近获得美国国防部的资助得到了突显,这对于一个位于中东的实验室来说尤为显著。这样的支持凸显了我们工作的全球相关性和潜在影响力。 问:生产这些晶体需要什么温度条件?需要高温炉吗?答:不需要,这些晶体在室温下通过有机溶剂形成,无需使用炉子或高温条件。这种简单性使它们区别于许多聚合物基材料,后者难以降解并导致微塑料污染。我们的小分子有机晶体对环境无害,并且可能自然分解。现在,随着我们认识到聚合物的弊端并寻求既可持续又实用的替代品,这种方法显得特别有吸引力。 […]

仿生智能晶体开创节能集水新技术 Read More »

King Abdullah Financial District (KAFD) Metro Station by Zaha Hadid Architects by Zaha Hadid Architects, Architecture firm, USA

利雅得地铁:城市交通的重大变革

King Abdullah Financial District (KAFD) Metro Station by Zaha Hadid Architects, Image credit: Hufton + Crow 利雅得地铁:城市交通的重大变革 沙特阿拉伯首都推出了一项规模空前、雄心勃勃的交通系统,标志着城市交通发展史上的一个分水岭:利雅得地铁。该变革性网络于2024年12月1日正式启用,拥有176公里的轨道,纵横交错于城市之中,通过六条不同的线路连接85个车站。地铁不仅仅是一项基础设施建设,更体现了利雅得对可持续城市发展和构建真正智能城市生态系统的前瞻性愿景。 King Abdullah Financial District (KAFD) Metro Station by Zaha Hadid Architects, Image credit: Hufton + Crow 这项宏伟工程的璀璨明珠是阿卜杜拉国王金融区(KAFD)地铁站,这是由富有远见的扎哈·哈迪德建筑事务所构思的杰作。这座建筑杰作是整个网络的神经中枢,通过标志性的KAFD天桥,无缝连接KAFD终点站、哈立德国王国际机场以及该区域的内部单轨铁路系统。 King Abdullah Financial District (KAFD) Metro Station by Zaha Hadid Architects, Image credit: Hufton + Crow 工程技艺与艺术美学的融合KAFD车站超越了传统交通枢纽的固有模式。其形态源于一个独特的三维立体网格——这种结构基于对乘客流动动态的精密数学建模。此类有机的几何形态延伸到车站的外部,由精心打造的超高性能混凝土板构成的立面,既向丰富的区域建筑传统致敬,又开创了创新的环境解决方案。几何穿孔的灵感来自周围沙漠景观中风蚀的轮廓,提升美学吸引力,同时提供有效的遮阳效果。 King Abdullah Financial

利雅得地铁:城市交通的重大变革 Read More »

Illustration showing a novel water treatment reactor that uses bubble cavitation technology to remove PFAS contaminants, developed by researchers at Oxford Brookes University by Dr. Iakovos Tzanakis and Dr. Morteza Ghorbani, Scientists, Oxford Brookes University, UK

破解永久污染:无PFAS(PFAS-Free)净水的曙光

Self portrait, Image credit: Dr. Iakovos Tzanakis Self portriat, Image credit: Dr. Morteza Ghorbani 破解永久污染:无PFAS(PFAS-Free)净水的曙光 英国牛津布鲁克斯大学的Iakovos Tzanakis教授和Morteza Ghorbani博士在环保领域取得重大突破:开发出能清除水中”永久化学物质”的创新技术。他们利用先进气泡空化技术研发的流体动力反应器,为处理有毒全氟和多氟烷基物质(PFAS)污染开辟了新途径。这项于2024年6月发表在《化学工程期刊》的研究,为解决全球PFAS水污染危机提供了新方案。 自1930年代起,PFAS就广泛存在于防水服装和不粘锅具等日常用品中,对环境和健康造成持久影响。这类物质不仅与癌症等严重疾病相关,还对传统处理方法具有极强抵抗性。在瑞典哈马比绍斯塔德污水处理厂的初步测试中,该反应器在30分钟内就达到了11种常见PFAS的36%降解率,且无需添加化学物质。 近期,我们采访了这两位科学家:工程材料与空化气泡动力学专家Tzanakis教授和微流体装置专家Ghorbani博士,了解他们如何开发这一创新技术,以及未来推广应用的愿景。 https://www.youtube.com/watch?v=FcZDyGcUg7U&t=1s 问:可以介绍一下您们的背景和目前的研究重点吗?Tzanakis教授:我是牛津布鲁克斯大学的工程材料教授,专门研究空化气泡动力学。我最初的研究集中在改进铝合金结构和开发纳米材料。不过,我现在已经将这些专业知识应用到废水处理领域。我目前的工作重点是利用空化过程去除水中的PFAS化学物质,这代表着我的研究从最初的材料工程转向了环境应用的重要转变。 Ghorbani博士:作为萨班哲大学的副教授和牛津布鲁克斯大学的皇家学会-牛顿学者,我专注于研究微观尺度下的流体动力空化物理现象。我的研究涉及在微流体装置中研究这些过程,并将这些知识应用于各种环境挑战。这不仅包括PFAS降解,还包括处理细菌、药物、微藻和微塑料等其他水污染物。我的目标是将基础物理学与实用的环境解决方案结合起来。 问:什么是PFAS?为什么它会引起重大环境担忧?Tzanakis教授:PFAS,即全氟和多氟烷基物质,是高度氟化的化合物,已成为一个重大的环境挑战。自20世纪50、60年代以来,人类一直在为各种产品制造这些化学物质。然而,科学家后来发现了一个严重的问题:我们能制造它们,却无法分解它们。这种持久性源于其结构中碳和氟原子之间极其牢固的键合。它们被称为”永久化学物质”,因为它们可以在环境中持续存在数百年,而自然界缺乏分解它们的机制。 Ghorbani博士:目前存在超过10,000种不同的PFAS化合物,常见于氟化工业和消防设备中。这些化学物质特别令人担忧,因为它们无处不在于日常用品中——从披萨盒和三明治袋等食品包装到不粘锅具。真正的环境挑战出现在这些产品的生命周期末端。当它们被弃置在垃圾填埋场时,这些化学物质会渗入地下水系统,最终污染我们的饮用水源。这形成了一个亟需打破的恶性污染循环。 Tzanakis教授:令人警惕的是这种污染循环如何自我延续。PFAS通过工业排放、垃圾填埋场渗滤液和日常产品处置等多种途径进入我们的水系统。这就是为什么我们的研究聚焦于通过新的气泡技术开发根本性的解决方案来打破这个循环。 问:您能解释一下气泡空化是如何分解PFAS化合物?Ghorbani博士:空化气泡与我们在沸水中看到的气泡有根本的不同。当空化气泡形成并随后崩溃时,会释放出巨大的能量。这种能量与我们反应器中的各种流动动力学相结合,似乎是瞄准和降解PFAS化合物的关键。 这个过程相当复杂,我们仍在研究其中的具体机制。这些崩溃的气泡会释放不同类型的能量——包括机械和化学效应——我们正在研究哪些具体效应对PFAS降解最为重要。虽然我们继续研究确切的机制,但我们知道气泡能量、流动动力学和工作流体中的其他参数的组合创造了能够分解这些传统上持久性化学物质的条件。 Tzanakis教授:令人兴奋的是,我们的方法利用自然物理过程,而不需要额外的化学处理。然而,理解确切的机制对于优化技术效果和扩大应用范围将至关重要。 问:您能解释一下流体动力反应器的设计因素和技术规格吗?Tzanakis教授:我们的反应器采用可调节的工作原理设计,具有显著的灵活性和优化空间。虽然核心概念保持不变,但我们可以调整各种参数,如材料表面特性、液体动力学和管道网络中的压力变化,以精确控制空化气泡的产生和行为。具体来说,我们的系统运行速度可达到每秒40-50米——约每小时150公里。设想气球(代表气泡)在急速流动的空气(代表废水)中形成:废水高速运动,由于压力差产生气泡。当这些气泡崩溃时,会释放出强烈的效应,促进PFAS的降解。 Ghorbani博士:气泡崩溃产生的巨大能量以各种方式表现——机械效应、化学效应、流动模式、冲击波和自由基。我们特别关注流动模式,因为这些为设计和配置我们的微流体装置提供了关键见解。通过理解和控制这些流动模式,我们可以更好地调节过程中的冲击波和化学方面。这种理解使我们能够优化表面改性和PFAS去除的整体性能,提供一个强大而高效的解决方案。 问:您的反应器与传统的PFAS处理方法相比如何?Ghorbani博士:目前,在处理厂中尚无标准化的工业规模去除PFAS技术。虽然存在一些试点装置,但我们的技术因两个关键原因而脱颖而出。首先,我们不使用任何化学品——仅依靠释放的气泡能量。其次,我们不需要电力等外部能源,因为我们利用污水处理厂管道系统中已有的能量。这些特点使我们的技术特别新颖,优于现有方法。重要的是,这是少数几个可以实际扩大规模的技术之一,因为其他方法在尝试扩大规模时往往面临高昂的成本和能源需求。 Tzanakis教授:这项技术的多功能性特别令人兴奋——它既可以扩大规模,也可以有效地缩小规模。该系统基于经过一些改良的管道网络,结构简单,适应性强。由于它不需要电力,只需要压缩气体来产生压力差,因此在农村地区或无法可靠供电的发展中国家都有潜在的应用。人们可能在家中就地净化井水,使其成为一个真正多功能的解决方案。 问:您在哈马比绍斯塔德工厂的测试中有什么发现?Tzanakis教授:我们针对11种最常见的PFAS类型进行了反应器测试,能够将PFAS浓度降到非常低,在每升5到10纳克之间。作为参考,美国环境保护署将饮用水限值设定为每升4纳克。在仅30分钟的处理后,在所有情况下,我们都将PFAS水平降至这个阈值以下,某些情况甚至降到更低(低于每升1纳克)。总体而言,我们实现了36%的平均降解率,这对该技术来说是非常有希望的结果。 Ghorbani博士:这些测试中有两个重要发现值得注意。首先,我们的技术成功去除了所有类型的PFAS成分——包括长链和短链变体。这很重要,因为大多数现有技术只能有效处理某些特定类型。其次,我们在极低浓度下——约每升1至2纳克——也取得了成功,在某些情况下实现了40-50%的降解率。在如此低的浓度下能达到这样的效果,对实际应用来说特别具有意义。 问:扩大这项技术规模的主要挑战是什么?Tzanakis教授:挑战因规模扩大或缩小而异。在缩小规模时,堵塞成为主要问题,因为较小的通道更容易被阻塞。在扩大规模时,侵蚀是主要挑战——气泡持续崩溃产生的冲击波会随时间逐渐损坏反应器表面。这意味着我们需要专注于材料技术,以确定最耐用和最适合长期运行的材料。 Ghorbani博士:除了技术挑战外,我们最大的障碍之一是获得行业认可。尽管臭氧化或其他高级氧化技术能耗高且成本效率低,但污水处理厂通常更倾向于使用这些传统技术。说服他们采用我们的新方法需要确凿地证明其价值。不过,我们的反应器已证明具有高度适应性——它可以处理从很小到20升的水量,下一步目标是200升,这使得技术扩展相对直接。 Tzanakis教授:还需要考虑经济因素。在最近与英国水务公司的讨论中,我了解到许多公司都在为目前紫外线水处理方法的高能耗而苦恼。他们正在积极寻求新的、更节能的技术。这为我们的系统提供了机会,因为它运行时能耗显著降低,有可能取代这些成本高、耗能大的技术。 问:国际合作在这项技术的开发中发挥了什么作用?Tzanakis教授:国际合作对我们的成功至关重要,为共同的挑战带来了不同的视角。每个合作伙伴都贡献了独特的优势和资源,创造出单独工作无法实现的协同效应。例如,不同国家为项目带来了不同的专业知识和能力,这种组合对实现我们的成果起到了关键作用。 我们的工作合作性质展示了复杂的环境挑战需要全球性的解决方案。我们跨多个国家和机构的合作使我们能够汇集资源、分享知识,并以任何单独团队都无法实现的方式加速发展。我们反应器的成功证明了国际科学合作的力量。 问:您的技术如何与全球减少PFAS污染的倡议保持一致?Ghorbani博士:我们的方法与欧盟委员会的指导方针和指令高度一致。目前,各方正在推动污水处理厂升级其PFAS去除设施。我们预计这些建议很快将成为强制性要求。现在就开始实施和测试新技术至关重要,因为评估和整合过程可能需要几年时间。我们不能等到法规变得更严格才开始测试解决方案——现在就是行动的时候。 Tzanakis教授:我们正面临一个持续70多年的遗留问题。虽然当前的倡议正在正确地关注减少新的PFAS生产,但我们仍需要处理数十亿现有的含PFAS产品和环境中已存在的数万亿PFAS分子。即使有即时的解决方案,清除我们世界中的这些”永久化学物质”也需要多年时间。这使得我们的技术特别具有相关性,因为它为应对这一巨大的环境挑战提供了一种实用的方法。 问:您实现全面应用的时间表是什么?最近的认可如何影响了您的工作?Tzanakis教授:我们对在未来几年内展示我们技术处理大量水体——高达200升——的效果持乐观态度。一旦我们实现这个里程碑,扩展到工业规模应该是可行。我们的研究最近受到全球媒体的关注非常重要,因为这种认可可能有助于获得额外资金来推进我们的工作,实现全面应用。 Ghorbani博士:实施需要全面的方法。虽然有适当的资金和国际联盟支持可以快速推进,但必须同步开发适当的监测系统。我们已经在土耳其、瑞典和英国建立了实施联系,但我们渴望在全球范围内扩展。重要的是,我们的技术不仅在PFAS去除方面显示出前景——在处理其他微污染物、细菌和活性药物成分方面也取得了成功。我们甚至在探索在家用电器中的应用,比如洗衣机,这项技术可以实现水的重复使用。 展望未来,我们设想为不同污染物开发标准化处理方案,尽管每个目标可能需要具体调整。虽然将来可能出现通用的”单一配方”解决方案,但令人鼓舞的是,我们的技术已经证明能同时有效处理PFAS和广泛的其他污染物。这种多功能性,加上不断增长的认可和支持,使我们在更广泛的应用方面处于有利位置。 结论随着全球对PFAS污染的认识不断提高和法规日益严格,牛津布鲁克斯团队的创新为一个持续数十年的环境挑战提供了充满希望的解决方案。他们无化学品、节能的方法有望彻底改变全球水处理方式,为跨世代的环境清理工作提供实用工具。随着技术的持续发展和实施,这项技术可能最终为打破PFAS污染的无尽循环提供途径,让我们离人人享有更清洁、更安全的水源的未来更近一步。 网站:https://cav-it.co.uk/https://www.brookes.ac.uk/profiles/staff/iakovos-tzanakis

破解永久污染:无PFAS(PFAS-Free)净水的曙光 Read More »

Mars Dune Alpha: A futuristic habitat on Mars featuring a transparent geodesic dome with living quarters and hydroponic gardens, designed by BIG and NASA for sustainable Martian colonization by BIG, Architecture, USA

火星沙丘阿尔法:开创太空建筑新纪元

Mars Dune Alpha: A futuristic habitat on Mars featuring a transparent geodesic dome with living quarters and hydroponic gardens, designed by BIG and NASA for sustainable Martian colonization., Image credit: BIG 火星沙丘阿尔法:开创太空建筑新纪元 设想一个人类以火星为家的未来。借助火星沙丘阿尔法(Mars Dune Alpha)这样的创新项目,这一愿景已不再局限于科幻小说。这座3D打印居住舱的设计为长期太空探索开辟了新道路。 由知名建筑事务所BIG与NASA和ICON联合开发的火星沙丘阿尔法远不止是一个原型。作为NASA CHAPEA项目的核心试验基地,这座位于休斯顿约翰逊航天中心的精密模拟居住舱,将让宇航员进行为期一年的模拟任务,为研究人类在类火星环境中的健康、表现和资源管理收集重要数据。 Mars Dune Alpha: A futuristic habitat on Mars featuring a transparent geodesic dome with living quarters and hydroponic

火星沙丘阿尔法:开创太空建筑新纪元 Read More »

Infinity - Dragon by Junko Umemiya, artist, painter, Japan

龙的温柔呼唤:梅宫顺子的艺术诗篇

Self portrait, Image credit: Junko Umemiya 龙的温柔呼唤:梅宫顺子的艺术诗篇 承古开新,梅宫顺子融传统于当代,以超凡气韵将日本画提升至灵性新境。她以和纸(washi)为底,颜彩(gansai)与岩绘具(iwa enogu)为笔,用精湛技艺创造出超凡脱俗的意境。 Goldfish’s Dream – New Moon 在梅宫的艺术世界里,光与影的交织臻至化境。她的夜景画作散发着内在光芒,宛如以月华为墨。画面中,神秘生灵翱翔天际——白色轻纱般笔触勾勒的龙,若隐若现于丝绒般的暗夜;透明的鱼儿遨游于星河之中,花朵绽放出超然光晕,花瓣仿佛镶嵌着星屑,如天际晨露般闪烁着创世之初的光芒。 Prayer, Image credit: Junko Umemiya 静谧夜景中,古树的枝条伸向繁星深处,描绘着亘古的传说。这不仅是视觉的呈现,更是开启深层思索的门扉,让神话与想象交织成篇,唤起观者内心最深处的共鸣。每幅作品都如心灵的镜像,映照出孤独、连结与超越的永恒主题——以细语而非呐喊的方式,引领观者进入一个平凡蜕变为神奇的空间,在此,日本艺术传统的智慧展现出新的生命力。 Ceiling Painting, Autumn “Thread Chrysanthemum”, Image credit: Junko Umemiya 承古启今“从小,我就被日本画所吸引,”梅宫回忆道,言语间透露出找到毕生志业的沉静笃定。她在日本画的传统路径上,逐渐发展出独特的艺术语言,既传承古法,又回应现代灵性诉求。这种融合在她对媒材与空间的精妙掌控中得到完美体现,每一笔触都兼具技艺的精准与情感的震颤。 Fragrant Night Breeze, Image credit: Junko Umemiya 天籁之语在梅宫的夜色画境中,月与大地展开空灵对话,将凡景化为心灵栖所。她以精妙笔触描绘月光,从新月至满月,编织出一首天地诗篇。月华穿透枝桠,与繁星织就光晕,与蝴蝶共舞于丝绒暗夜。圆形画作中,明月笼罩落樱,完美诠释这场天地之语。温柔月光融化天地界限,或如轻纱,或似利剑,指挥着光影无声交响,邀观者共赴这场永恒与瞬息的天地之约。 Infinity – Dragon, Image credit: Junko Umemiya 神龙之灵梅宫艺术中最为独特的是她对龙的崭新诠释。这些神灵以皓白之姿浮现于深邃蓝天,一反传统庙宇中威猛守护神的形象,呈现出智慧与慈悲的温润气质。通过精细如羽的笔触,她塑造出游走于虚实之间的龙形,既展现力量又流露柔情,既传承古韵又超越时空。”龙以异象向我显现,”她娓娓道来,描述着这份已成为她艺术核心的神秘感召。 Blooming at the New Moon, Image credit: Junko

龙的温柔呼唤:梅宫顺子的艺术诗篇 Read More »

Kuhl’s pipistrelle bats by Dr. Aya Goldshtein, Scientist, Germany

精确定位:揭秘库尔氏蝙蝠的双重导航系统

Self portrait, Image credit: Dr. Aya Goldshtein 精确定位:揭秘库尔氏蝙蝠的双重导航系统 具有回声定位能力的小蝙蝠,能在漆黑环境中自如穿行,这种神奇本领长期以来令科学界为之着迷。最新研究发现,这些蝙蝠具备”声学认知地图”系统,即使被移至陌生环境,它们也能准确定位自身位置,并单凭回声定位完成远距离飞行。研究团队在以色列胡拉谷对库尔氏蝙蝠的观察表明,虽然这些蝙蝠主要依赖回声定位来导航,但在条件允许的情况下,它们也会借助视觉来提升导航精准度。这项刊登于10月31日《科学》杂志的开创性研究,不仅打破了人们对蝙蝠感知能力的固有认识,更揭示了它们导航机制的多层次性。 该研究团队追踪了76只体重仅六克的库尔氏蝙蝠,并将它们转移到离栖息地三公里范围内的不同位置,观察它们的导航能力。每只蝙蝠都配备了一个轻型反向GPS追踪系统(ATLAS),用于实时收集高精度的活动数据。即便仅依靠回声定位,95%的蝙蝠能在几分钟内找到返回栖息地的路径。研究还发现,当蝙蝠同时运用视觉时,它们的导航能力会进一步提升,展现出惊人的感知适应性。通过详细观察和谷地的3D模型分析,研究发现蝙蝠倾向于在提供更丰富声学信息的环境特征附近飞行——即具有较高”回声熵”的区域,借此确定方位并作出准确的导航判断。 我们有幸采访了来自马克斯·普朗克动物行为研究所和康斯坦茨大学卓越集群集体行为高等研究中心的核心研究员戈德施泰因博士(Dr. Aya Goldshtein)。在访谈中,戈德施泰因博士详细阐述了研究方法、发现的重要意义,以及这些发现如何加深了我们对蝙蝠导航和认知地图的理解。她的见解突显了蝙蝠非凡的导航能力,以及它们如何巧妙地整合多种感官信息来穿行环境。 Kuhl’s pipistrelle bats, Image credit: Jens Rydell 问:是什么样的学术经历让你投身蝙蝠导航研究?答:我在特拉维夫大学完成了动物学博士学位,研究重点是蝙蝠的觅食和导航行为。目前,我正在马克斯·普朗克动物行为研究所和康斯坦茨大学进行博士后研究,在由伊恩·库辛(Iain Couzin)领导的集体行为部门工作。这项研究是我们研究所与特拉维夫大学的约西·约维尔(Yossi Yovel)和陈星(Xing Chen)合作的成果。希伯来大学的兰·纳坦(Ran Nathan)和特拉维夫大学的西凡·托莱多(Sivan Toledo)也为我们所使用的ATLAS系统的开发做出了重要贡献。追踪这些每只仅重约六克的小蝙蝠确实具有挑战性,而各方的通力合作对于克服这些障碍起到了不可或缺的作用。 问:你能解释一下蝙蝠是如何建立它们的”声学认知地图”?它们需要多少次访问一个地点才能构建这种环境心理地图?答:声学认知地图与视觉地图有着根本的差异,这主要源于两种感知方式所依赖的感知范围不同。蝙蝠的视觉感知范围可达约两公里,但它们的回声定位范围仅限于几十米。举例来说,探测到一座山可能仅能在约30米的距离内实现——具体取决于物种和它们回声定位声波的频率。这种感知范围的差异显著影响了蝙蝠构建内部地图的方式。 视觉地图允许动物在不实地访问每个地点的情况下,识别远处的标志物,就像人类能从远处定位一家杂货店一样。然而,声学地图的建立则要求蝙蝠必须亲自探索各个区域,才能构建完整的环境地图。我们推测,蝙蝠需要事先访问过某个地点,才能在之后通过回声定位重新识别该地点,但目前我们尚不清楚需要多少次访问才足以收集必要的信息。这就是为什么我们特意将蝙蝠释放在其活动范围三公里以内的原因。在这个熟悉的区域内,蝙蝠能够有效地确定方位。但在其已知范围之外,如果没有亲自访问和通过回声定位绘制这些空间的地图,它们可能缺乏在陌生区域导航所需的声学认知地图。 问:是什么启发你研究蝙蝠是否使用认知地图进行导航?你最初的假设是什么?答:在我的博士研究期间,我发现埃及果蝠——体型明显大于库氏伟氏蝠——主要依靠视觉进行导航,利用我们所说的视觉认知地图来找寻方向。这一发现促使我开始探索在更受限制的条件下的导航行为,特别是使用回声定位的情况。一只动物能够仅凭如此有限的感知方式横跨大距离,这个想法令我着迷,也成为了这项研究的动力。 随着我对这个课题研究的深入,我越发对蝙蝠如何在完全黑暗中成功导航,甚至跨越可能的巨大距离产生了浓厚的兴趣。关于蝙蝠导航,特别是在更大尺度上的导航行为,仍有许多有待探索的领域。随着时间推移,像更小型的GPS设备等技术进步,使研究人员能够更密切地追踪蝙蝠,收集它们的导航和觅食行为数据。这些不断增长的信息持续揭示着蝙蝠导航的非凡之处,有时甚至会带来意想不到的发现。 问:在你的研究中,发现库尔氏蝙蝠同时使用视觉和回声定位。这是一个出乎意料的发现吗?这个发现如何改变了我们对蝙蝠导航的认识?答:发现这些蝙蝠除了回声定位外还使用视觉确实出乎意料。最初,考虑到它们相对较小的眼睛,我们推测回声定位会是它们主要的导航方式。发现视觉在它们的导航中也发挥作用着实让我们惊讶。 回声定位过程中,蝙蝠会发出声音——主要通过嘴部,但有些物种使用鼻子——并通过解读回声来判断物体的距离、大小和质地。这个过程帮助它们进行导航和捕猎,无论是捕捉昆虫还是避开树木和山脉等障碍物。它们的回声定位声波频率和模式会根据活动类型而变化。在追捕猎物时,蝙蝠会更频繁地发出更高频率的声波,以获得移动目标的详细”图像”。而在日常飞行避免碰撞时,它们的声波发出频率则较低。 这些高频声波通常人类无法听到,但研究人员可以使用特殊设备将频率转换到可听范围内,从而定位和监测蝙蝠种群。发现蝙蝠还能依赖视觉,加深了我们对它们适应能力的理解,表明它们的导航能力比此前认为的更为复杂精妙。 问:你能详细介绍一下在胡拉谷进行的实地实验吗?将蝙蝠转移到三公里半径范围内如何帮助展示它们的导航能力?答:胡拉谷主要是农业区,提供了开阔的景观,包括农田、树木线、沼泽和河流等独特特征。这些多样的地标可能都充当着蝙蝠的导航参照物。在我们的研究中,我们将蝙蝠转移到离它们栖息地三公里半径范围内的不同地点后进行追踪,确保它们仍在已知的活动范围内。这种受控的位置转移让我们能够观察蝙蝠是否能利用现有的环境线索返回栖息地。 谷地的开阔田野和较少的障碍物有助于我们使用ATLAS系统精确追踪它们的飞行路径。这种实验设置帮助我们证实蝙蝠能有效识别特定地标,并利用这些特征来确定方位,在几公里范围内成功返回家园。通过将它们保持在已知范围内,我们确认了蝙蝠依赖环境线索进行导航,而这些线索构成了它们声学认知地图的一部分。 https://www.youtube.com/watch?v=XbbWn5C5xzA&t=2s 问:ATLAS 追踪系统是如何运作,是什么让它特别适合这项研究? 答:在使用ATLAS追踪系统时,我们为每只蝙蝠都安装了一个微型轻质无线电发射器,而安装在胡拉谷周边的接收器,通常位于山顶等高地,可以检测这些信号。由于库尔氏蝙蝠通常活动在谷内,只要它们保持在范围内,接收器网络就能实时追踪它们的移动。 ATLAS设备的轻量化特性确保不会影响蝙蝠的自然飞行行为,这使它成为研究蝙蝠导航的理想工具。此外,ATLAS提供的精确位置信息与GPS设备的分辨率相当,这对于详细分析蝙蝠的飞行路径和导航策略至关重要。胡拉谷开阔的地形也有助于系统的有效运作,因为它最大限度地减少了可能干扰追踪信号的干扰。 这种方法,结合蝙蝠的移动模式和谷地的独特特征,使研究人员能够验证蝙蝠是否在其栖息环境中使用声学认知地图。 问:研究显示蝙蝠倾向于在具有较高”回声熵”的环境特征附近飞行。你能解释一下什么是”回声熵”,它如何影响蝙蝠的导航选择?什么是”更丰富的声学信息”的例子?答:回声熵是一个用来描述蝙蝠在使用回声定位时接收到的回声复杂度的指标。我们创建了胡拉谷的3D模型,并通过回声定位模拟来确定蝙蝠如何感知周围环境。简单或均匀的环境,比如平坦的农田,产生的回声相对一致,导致较低的回声熵。相比之下,具有多样特征的复杂环境——如树木、山脉或沼泽——会产生更多变和复杂的回声,形成较高的回声熵。 蝙蝠似乎更喜欢这些具有更丰富声学信息的区域,因为它们能提供更详细的环境线索。例如,一棵特别大的树木与较小的树木或开阔地相比,会产生不同的声音反射,从而形成一个明显的声学标志物。通过在产生复杂回声的特征物附近导航,蝙蝠能更好地确定自己的位置并找到返回家园的路。 本质上,这些不同标志物产生的回声模式变化使蝙蝠能够构建和完善它们的声学认知地图,辅助导航。 问:你是如何发现蝙蝠也依赖视觉进行导航?答:为了研究视觉的作用,我们进行了一项实验,暂时遮住一些蝙蝠的眼睛。通过比较被遮住眼睛的蝙蝠与能够看见的蝙蝠的导航表现,我们发现两组蝙蝠都能够完成导航,但保持视觉的蝙蝠导航速度要快得多。 这表明,虽然蝙蝠可以仅依靠回声定位找到方向,但视觉能力显著提高了它们的导航效率。不过,需要注意的是,蝙蝠是夜行动物,经常在月光很少或没有月光的条件下飞行。在这些时候,它们不能仅仅依赖视觉,必须使用回声定位和其他感官来导航。 发现蝙蝠在可能的情况下会使用视觉,凸显了它们感知适应能力的多样性以及导航策略的复杂性。 问:当你观察蝙蝠的飞行模式时,你如何解释从蜿蜒飞行到定向飞行的转变?这对它们的空间感知能力说明了什么?答:我们观察到,当蝙蝠对自己的位置不确定时,最初会采取曲折或搜索式的飞行。在这个阶段,它们会在具有较高回声熵的环境特征附近飞行,以收集更详细的声学信息,有效扫描周围环境中的独特线索。例如,一只蝙蝠可能开始沿着农田飞行,然后转向并飞回到更复杂的区域,比如道路或树林,以获得更丰富的回声。这种行为表明蝙蝠在主动尝试确定自己的位置。 一旦它们认出自己的位置,就会转向更直接的飞行路径,笔直朝目的地飞去。这种从曲折到定向飞行的转变表明,蝙蝠具有类似于声学认知地图的空间感知能力。通过回声定位,它们似乎能够拼凑出自己在谷地中的位置,并确定到栖息地的方向和距离。 这种理解意味着它们拥有环境的心理表征,而不是仅仅依靠简单的导航策略,如跟随固定路线或直接朝向可见的地标飞行。一旦使用各种声学线索确定了位置,蝙蝠就能直接导航回家,即使在完全黑暗的环境中也能做到,这展示了它们空间感知能力的精密性,以及声学认知地图在指导其飞行模式中发挥的关键作用。 问:风雨会影响或增加蝙蝠飞行和导航的难度吗?答:风和雨确实会显著影响蝙蝠的飞行和导航决策。如果蝙蝠活动时遇到强风,它们可能会改变常规的飞行路线,比如沿着树线寻求庇护以避开阵风。 关于雨对蝙蝠的影响,特别是对回声定位的影响,我们了解得较少。我们知道一些蝙蝠物种在下雨时会推迟离开栖息地,可能是因为降雨干扰了它们使用回声定位进行导航或捕猎的能力。 极强的风也可能对蝙蝠造成危险,甚至致命。在某些情况下,已经观察到意外的阵风会对蝙蝠造成重大伤害。虽然蝙蝠具有适应能力,但风雨等环境条件可能会使它们的飞行变得复杂,并可能影响它们的导航策略和整体生存。 问:用于寻路的回声定位和用于捕猎的回声定位有什么区别?答:寻路和捕猎的回声定位服务于不同目的,使用不同的模式。当蝙蝠使用回声定位进行导航时,它们会发出更响亮、更长的声波,频率较低,声波之间的间隔也更长。 相比之下,在捕猎时,蝙蝠会切换到一种更密集的模式——它们使用较弱和较短的高频信号,声波之间的间隔非常短。蝙蝠需要快速处理从昆虫身上反弹回来的回声来确定其位置。这是一项更具挑战性的任务,因为猎物明显更小且移动性强,即使有着精密的捕猎回声定位系统,蝙蝠也不是每次都能成功捕获猎物。

精确定位:揭秘库尔氏蝙蝠的双重导航系统 Read More »

Behind the Curtains by Jiří Hřebíček, Photographer, The Czech Republic

捕捉瞬息:伊日·赫热比切克(Jiří Hřebíček)当代野生动物摄影的超然视角

Self portrait, Image credit: Jiří Hřebíček 捕捉瞬息:伊日·赫热比切克(Jiří Hřebíček)当代野生动物摄影的超然视角 在美学造诣与自然世界记录的交汇处,伊日·赫热比切克(Jiří Hřebíček)的作品展现了对动态荒野的非凡沉思。他在野生动物摄影师年度大赛上的近期成就,尤其是其代表作《艺术鸦影》在自然艺术类别中获得最高荣誉,充分展现了他那超凡的才能——通过融合技术精湛与艺术升华来捕捉野性生命的精髓。 赫热比切克的独特美学范式源于对动态与光影的创新运用,在长时间曝光过程中灵活运用意向性相机移动技术(ICM)。这种方法论将传统的野生动物摄影转化为空灵的印象派画,其中氛围共鸣与情感深度超越了清晰度的追求。通过对色彩、明暗对比的实验性探索,赫热比切克构建出反映自然瞬息交响的多层次构图。 他的作品体现了精心策划与即兴创作的完美融合,经过细致编排的构图在自然动态的催化下焕发新生。这种微妙的平衡产生了深刻的怀旧式沉思,引导观众进入一场沉浸式的现象学之旅。我们很荣幸能与这位前卫先驱展开对话,他的动态方法论和敏锐的世界观为自然现象与艺术表现之间的共生关系开启了一场振奋人心的对话。 Pied Avocets, Image credit: Jiří Hřebíček 问:你能否阐述是什么关键时刻点燃了你对野生动物摄影,特别是对鸟类摄影的热爱?答:我的摄影之旅可以追溯到一个关键的童年时刻——那是六岁时祖父富有远见地赠予我自然史书籍的时候。在这些珍贵的典籍中,有一册记载二十世纪动物学新发现的著作——从印度尼西亚威猛的科莫多巨蜥到非洲神秘的霍加皮羚羊——激发了我对自然奥秘持久的着迷。这早期的智识火花推动我在大学攻读动物学和生态学,并曾短暂地从事富有启发性的科研工作。尽管捷克共和国当时对年轻科学家并不十分有利的环境最终促使我转向私营部门,但我对自然科学的热情从未减退。 向野生动物摄影的转变,是科学素养与美学感知的自然融合。虽然我的艺术视野已经扩展到更多样的主题,但野生动物——尤其是鸟类——始终是我最为钟爱的对象。有趣的是,尽管在求学期间因分类学的复杂性而对鸟类学并不特别热衷,但我现在已将鸟类视为完美的摄影主题。它们在我们日常环境中无处不在,加上其固有的美学价值,使它们成为艺术捕捉的理想主角。 Snow geese, Image credit: Jiří Hřebíček, 问:你是如何发展出这种融合印象派和抽象艺术的独特摄影风格,特别是运用意向性相机移动技术(ICM)?答:我的艺术进化经历了一段引人入胜的过程,从传统的野生动物摄影——最初满足于创作典型的国家地理式照片——逐渐发展为更富个人特色的表达方式。转变的催化剂源于一个认知:团队摄影之旅产生的作品往往千篇一律,这促使我深入思考摄影作为个人艺术表达媒介的本质。 转折点出现在我发现一位荷兰摄影师通过此(ICM)技术来诠释非洲野生动物的印象派作品时。这一发现为我指明了一条独特的艺术表达途径,同时又能保持对野生动物摄影的忠实。在随后的八年里,我对这种方法论的投入愈发深入,现在约95%的作品都采用有意识的模糊处理——这是对传统摄影范式的一种刻意颠覆。 这种技术为我打开了一个充满无限创作可能的世界,即便是在熟悉的地点也能产生独特的构图。虽然许多摄影师偶尔会将ICM作为辅助技巧使用,但我对这种方法的全面拥抱促成了一种标志性风格的形成,超越了传统野生动物摄影的界限,实现了与自然更深层次、更个人化的艺术对话。 The Artful Crow, Image credit: Jiří Hřebíček 问:你的杰作《艺术鸦影》在野生动物摄影师年度大赛的自然艺术类别中获得最高荣誉,代表着创作成就的巅峰。你能否阐述这部作品的艺术起源及其在你摄影历程中的意义?答:《艺术鸦影》获得认可特别令人欣慰,因为它体现了我用光线作画的理念,将相机转化为如画笔般的创作工具。这幅作品通过创新运用意向性相机移动技术而诞生——这种技术通常用于通过追踪拍摄来捕捉运动主体。然而,我颠覆了这一惯例,将时间操控应用于静止的主体。 技术执行涉及一个精确的编排:在两秒的曝光时间里,先保持静止,继而进行刻意的相机移动,创造出现实的印象派转化。至关重要的是,这种空灵效果完全在相机内完成,没有使用数码处理或合成技术——这种摄影纯粹主义在注重真实性的比赛环境中尤为重要。 这件作品常常引发有趣的反响,特别是当它被展示在画布上时,观众常常误以为这是一幅油画。这种令人愉悦的混淆完美诠释了我的艺术愿景。这一荣誉不仅仅是一种认可,更是对我非传统摄影方式的肯定,激励我进一步探索这种独特的摄影语言。 Leaving…, Image credit: Jiří Hřebíček 问:你的获奖作品《离去》巧妙地编织了自然元素。你是如何在捕捉自然现象的本质时,实现了静态与动态元素的空灵融合?答:《离去》集中体现了我对自然构图中静止与运动之间相互作用的着迷。这幅影像摄于新墨西哥州博斯克德尔阿帕奇保护区——虽然只是我摄影旅程中一次独特而深刻的邂逅,却通过刻意融合静止和动态元素,超越了传统野生动物叙事的界限。 尽管这个地点因其候鸟沙丘鹤和雪雁而闻名,但却是一群红翼黑鸟提供了这个奇妙时刻。它们的集体运动创造出一个非凡的视觉隐喻:最初仿佛是树木结构的自然延伸,它们突然的离去化作一种树木的蜕变——宛如树木自身正将叶片献给风。 由此产生的构图唤起了永恒与瞬逝之间的神秘对话,鸟群的离去化作空灵的薄雾,拥抱着巍然不动的树木。这种静态框架与动态离去的交汇,体现了我将自然瞬息诗意提炼为视觉形式的技术方法。 问:你提到在创作画意照片时让想像力驰骋。你能详细说明用来达到这种艺术效果的技巧吗?答:意向性相机移动技术虽与摄影术同源,却刻意与现代摄影对完美清晰度的追求形成对比。我的方法通过延长曝光来操控时间,这体现在几种独特的方法论中。 基础技术涉及经典的相机跟拍——在1/30到1/50秒的曝光时间内将相机移动与主体运动同步,在主体清晰度和环境抽象化之间创造动态张力。这种技术进一步演化为更细微的应用:静态与动态元素的编排,即静止主体锚定构图而运动创造空灵边缘;水面倒影的捕捉,让自然的扭曲无需相机干预即可创造印象派画面;以及最近探索的对静态主体更复杂的时间编排。 后者代表了我目前的探索方向——一种静止与动态的精妙结合,先进行静态捕捉,继而进行刻意的相机移动,收集环境纹理和光泽。这种方法超越了简单的取景器构图,需要考虑整个光线环境。虽然数码技术促进了这种迭代过程,但要达到掌握程度需要深入理解运动对光线收集的影响。通过这种实验性的综合,我创作出突破摄影与印象派绘画界限的影像,不仅捕捉视觉现实,更捕捉每个场景的情感本质。 The Dance, Image credit: Jiří

捕捉瞬息:伊日·赫热比切克(Jiří Hřebíček)当代野生动物摄影的超然视角 Read More »

Capitaspring tower designed by BIG and CRA wins the international High-Rise award 2024/25 by BIG, Architecture firm, USA

新加坡的垂直花园:凯德春树大厦荣获世界最佳高层建筑奖

Capitaspring tower designed by BIG and CRA wins the International High-Rise Award 2024/25, Image credit: Finbarr Fallon 新加坡的垂直花园:凯德春树大厦荣获世界最佳高层建筑奖 新加坡最新的建筑奇迹——凯德春树大厦(CapitaSpring)荣获2024/25年度国际高层建筑奖,为城市创新树立了新标准。这座高达260米的杰作,由BIG建筑事务所(Bjarke Ingels Group)与Carlo Ratti Associates携手打造,重新定义了现代摩天大楼的可能性。 Capitaspring tower designed by BIG and CRA wins the International High-Rise Award 2024/25, Image credit: Finbarr Fallon 凯德春树大厦优雅地矗立在一片曾被忽视的土地上,不仅为新加坡壮丽的天际线增添新姿,更是一个将自然与都市生活完美融合的垂直生态系统。大楼最引人注目的特色是其创新的绿化空间整合方式,将传统高层建筑的概念转化为一座充满生命力的垂直花园。 「我们希望将这座高层建筑探索为新加坡独特热带都市主义的垂直延伸,」Bjarke Ingels如此解释。建筑物独特的立面设计,透过巧妙分隔的垂直线条,在室内外空间之间创造出生动的对话,突破传统幕墙设计,营造出更具吸引力和亲和力的空间。 Capitaspring tower designed by BIG and CRA wins the International High-Rise Award

新加坡的垂直花园:凯德春树大厦荣获世界最佳高层建筑奖 Read More »

New research reveals regular patterns in three-body gravitational interactions, challenging traditional views of purely chaotic behavior.

宇宙的隐藏规律:三体问题研究新解

Self portrait, Image credit: Dr. Alessandro Alberto Trani 宇宙的隐藏规律:三体问题研究新解 几个世纪以来,三体问题一直困扰著数学家和物理学家,它描述了太空中三个质量体之间看似不可预测的引力互动。传统上,由于其混乱本质,这个问题被认为无法求解。然而,这个天体之谜如今正在被重新审视。来自哥本哈根大学尼尔斯·玻尔研究所的亚历山德罗·阿尔贝托·特拉尼博士(Dr. Alessandro Alberto Trani)的突破性研究揭示,这些互动实际上展现出令人惊讶的规律性,挑战了人们长期以来对宇宙混沌的既有认知。他的研究最近发表在《天文学与天体物理学》期刊上。 近期,我们有幸采访了特拉尼博士。在交谈中,他分享了对这个复杂的天体三体问题的最新研究与见解。他的研究在天体运行的混沌中发现了「规律性孤岛」,表明这些运动结果并非完全随机,而往往可以根据初始条件(如位置、速度和接近角度)进行可预测的推算。 让我们一同深入探讨特拉尼博士的革命性研究,了解这一发现如何增进我们理解引力波和塑造宇宙的基本力量。以下是我们与亚历山德罗·阿尔贝托·特拉尼博士的专访内容。 This map, created from millions of simulations, shows ‘isles of regularity’ within three-body interactions. Image credit: Alessandro Alberto Trani 问:您能解释一下三体问题在传统数学和理论物理学中的理解,以及为什么它被认为是无解的吗?答:三体问题是一个历史悠久的课题,最早可追溯到牛顿时代,此后众多物理学、天文学和天体物理学的奠基人物都对此进行过探索。这个概念始于牛顿成功解决的二体问题,也就是描述两个天体之间的引力互动。二体问题被视为一个完全可预测系统,意味着我们能找到精确的解析解。只要知道两个天体的初始位置和速度,我们就能精确预测它们未来的运动轨迹。 然而,三体问题本质上完全不同,它是不可解系统。科学家最初对三体问题的深入研究是为了理解月球运动,因为地球、月球和太阳构成了一个三体系统——这是离我们最近的三体系统范例。早期科学家发现他们无法准确预测月球的轨道,特别是其岁差、章动和近地点(月球轨道中最接近地球的点)的推进。 庞加莱(Henri Poincaré)在十九世纪末发现,三体问题呈现出混沌行为。他的研究表明,初始条件的微小差异会导致截然不同的结果,使得长期预测变得不可能。自庞加莱的发现以来,研究人员一直依靠数值方法——电脑模拟——来研究这个问题,因为无法获得解析解。 近年来,我们开始使用统计方法来应对三体问题固有的混沌特性。透过将系统作为统计对象进行处理,我们希望能基于概率而非精确解来预测结果。在我最近的研究之前,人们普遍认为三体问题完全是混沌,我们使用统计理论利用这种混沌来预测相互作用的结果。 然而,我的研究表明,三体问题并非纯粹是混沌;它实际上是混沌与规律性的混合体。这意味著在混沌之中,系统有些区域是可预测。这一发现使我们对三体问题的理解变得更加复杂,并且挑战了单纯统计方法的有效性,因为规律性的存在影响了我们进行准确预测的能力。这表明我们需要发展新的方法,以同时考虑三体问题中混沌和规律性的层面。 问:最初是什么吸引您研究这个复杂的问题?它与您更广泛的研究兴趣有何关联?答:好奇心是驱使我研究这个复杂问题的主要动力。作为一名天体物理学家而非数学家,我是从天体物理学的角度来探讨这个问题。我的目标是理解三体互动,以及如何运用它来解决天体物理学的问题。 举例来说,就像早期科学家运用三体问题来理解地球和太阳对月球运动的影响一样,我们将其应用于黑洞和引力波的研究。在过去十年间,我们开始在地球上探测到引力波,这为我们开启了认识宇宙的新视窗。然而,我们仍未完全理解这些引力波的来源。 一种可能的解释是,这些引力波来自大质量恒星残骸——黑洞的相遇。当黑洞相遇时,会释放引力波能量,最终合并。我们可以用地球上的仪器探测到这些事件。我们知道这种三体互动很可能发生在被称为星团的巨大恒星集合体的中心。这些星团遍布宇宙各处,而它们的演化深受其核心区域三体互动的影响。 虽然我们无法直接观察黑洞之间的互动——毕竟它们不发光(它们是黑色的),但我们可以研究它们产生的引力波。对三体问题的理解帮助我们解读这些引力波,并深入了解星团内部的动力学特性。这项研究将我对天体物理学的兴趣与三体问题所带来的基本挑战巧妙地联系在一起。 问:您的研究表明在三体互动的混沌中存在著「规律性孤岛」。您能描述一下这是什么,以及它如何挑战了人们对三体问题的传统认知?答:当然可以!传统上,三体问题被认为是完全混沌,这意味著由于对初始条件极度敏感,预测三个天体在引力作用下的长期行为几乎是不可能。初始状态的微小差异可能导致截然不同的结果,使得系统变得不可预测。 然而,我的研究发现了在这片混沌景象中存在著我们称之为「规律性孤岛」的区域。这些是在可能的初始条件图谱中,系统表现出可预测、规律性行为的区域。为了帮助理解这一点,您可以想像一张图表,其中每个点代表三个天体的特定初始构型,每个点的颜色则基于互动的结果——例如,哪个天体最终会被抛出系统。 在一个纯粹的混沌系统中,所有点的颜色应该都是随机的,呈现出三种颜色的混杂状态——因为即使是非常接近的初始构型也会导致不同的结果。然而,我们观察到四个大型的、颜色分明的区域——以蓝色和绿色表示——在混沌的背景中清晰可见。在这些「规律性孤岛」中,即使我们改变初始构型,最终结果始终保持不变。 这些「孤岛」对应著三体系统快速分离的情况,其中一个天体被迅速抛出。由于互动时间很短,混沌行为没有足够的时间发展,因此结果是可预测。 这一发现挑战了传统认知,证明三体问题并非纯粹的混沌;相反,它呈现出混沌与规律性的混合状态。这些规律区域的存在意味著,在某些特定的初始条件下,我们可以更有把握地预测三体互动的结果。 让我们用太阳系来作为参照。虽然太阳系是一个包含许多天体的复杂系统,但它在长期内相对稳定。例如,地球-月球-太阳系统并不表现出典型三体问题中的混沌特性,因为月球一直保持在环绕地球的稳定轨道上。如果我们显著改变月球的轨道——比如给它一个额外的推力——它可能变得不稳定,潜在地导致混沌行为,月球最终可能摆脱地球的引力束缚。这就类似于三体问题中研究的不稳定情况。 总的来说,「规律性孤岛」揭示了在特定条件下,三体问题中确实存在可预测性。这一发现不仅挑战了长期以来的假设,也提升了我们在天体物理学中对复杂引力互动的建模和理解能力。 问:初始位置、速度和接近角度如何影响这些可预测的模式?答:在三体互动的「规律性孤岛」中,初始位置、速度和接近角度在影响可预测模式方面扮演著关键角色。我们知道这些初始条件与系统的最终结果之间存在著精确的对应关系。这意味著特定的起始构型会导致特定的结果,尤其是在这些规律区域内。 然而,我们尚未完全确定这种精确对应关系的具体样貌。虽然我们认识到在这些规律性孤岛中存在著明确的联系,但目前我们还缺乏一个全面的理论来解释和预测基于初始条件的结果。相比之下,对于混沌区域——「混沌之海」——我们可以通过统计方法在大量模拟中有效地预测结果。 「规律性孤岛」的挑战在于它们并不完全符合统计分析;它们的可预测性既不是随机,但也未被完全理解。克服这一障碍的一个潜在方法是使用机器学习和人工智能来预测这些区域及其结果。人工智能可能帮助识别传统方法无法立即发现的模式和对应关系。 然而,作为天体物理学家,我们的目标是开发可以理解和诠释的物理模型。虽然人工智能可以提供预测,但它可能无法提供我们所寻求的基本物理洞见。我们的目标是建立一个基于物理学的理论,解释初始条件如何在这些规律区域中导致特定结果,从而增进我们对三体互动的整体理解。

宇宙的隐藏规律:三体问题研究新解 Read More »

Spilling Out - Aerial image taken in New Zealand, Part of the Finalist Series for the Siena Drone Awards 2024 by Nilmini De Silva

俯瞰变迁,摄影师尼尔米妮·德·席尔瓦 (Nilmini De Silva) 的空中视角

Self Portrait, Image credit: Nilmini De Silva 俯瞰变迁,摄影师尼尔米妮·德·席尔瓦 (Nilmini De Silva) 的空中视角 在当今的视觉故事世界中,澳大利亚摄影师尼尔米妮·德·席尔瓦 (Nilmini De Silva) 正成为环保运动中的重要发声者。她巧妙地融合土木工程的专业背景和艺术家的敏锐视角,创作出富有感染力的作品,揭示了自然界的脆弱性与韧性。 Looking Within – Taken in 2010 in Antarctica, while on my Gap Year. One of my early images., Image credit: Nilmini De Silva 环保意识激发的摄影热情 2010年,一次偶然的”间隔年”经历开启了尼尔米妮的摄影之路。在南非参与”摄影与自然保护项目”时,她在专业摄影师的指导下,沉浸在非洲壮丽的自然景观中提升摄影技巧。她说:”这开启了我的创作之旅,我希望能够坚持终身。” 这段经历不仅教会了她摄影技术,更激发了她用艺术倡导重要议题的热情。 作为一名专注于水资源管理的土木工程师,尼尔米妮对环境始终怀有深厚的感情。她说:”摄影成为了我传达关注议题的重要工具。” 她的作品聚焦于气候变化、栖息地消失以及可持续发展的紧迫性等主题,通过视觉讲述唤醒人们的意识并推动实际行动。 Spilling Out – Aerial image taken in New Zealand, Part

俯瞰变迁,摄影师尼尔米妮·德·席尔瓦 (Nilmini De Silva) 的空中视角 Read More »