Adelina 艾德琳

Architecture firm Foster + Partners unveils innovative lunar infrastructure design, collaborating with NASA and 3D printing pioneers Branch Technology. The concept illustrates essential power and communication systems required for sustainable lunar surface operations

点亮月球:月球南极太阳能塔

点亮月球:月球南极太阳能塔 当人类憧憬在地球以外建立永久基地之时,一项具有前瞻性的基础设施工程设计正为我们的太空未来引路开航。 月球能源新构想 在探索其他星球可持续前哨站的过程中,能源生产是一项巨大挑战。由知名建筑事务所Foster + Partners与Branch Technology公司合作的一个创新项目,为月球崎岖地形提供了量身定制的解决方案。他们为月球南极设计的这座50米高太阳能塔,是以建立长期月球探索和居住所需的基础设施为目标。该项目获得了美国国家航空航天局(NASA)小企业创新研究(SBIR)第一阶段计划的支持,可能彻底改变我们在太空中获取能源的方式。 “月球南极是太阳能的’宝库’,”Foster + Partners的首席设计师埃琳娜·马丁内斯(Elena Martinez)表示。”在长约14个地球日的月昼期间,其高地几乎持续沐浴在阳光中。垂直塔结构能高效捕获这种能量,无需在其他位置可能需要的复杂跟踪系统。” Architecture firm Foster + Partners unveils innovative lunar infrastructure design, collaborating with NASA and 3D printing pioneers Branch Technology. The concept illustrates essential power and communication systems required for sustainable lunar surface operations. Image credit: Foster + Partners 为月球前沿而建 为月球建造结构将工程学推向极限。这座塔必须能承受在酷热的月昼和严寒的月夜之间超过300摄氏度(540华氏度)的极端温差,同时要足够轻,以便从地球发射,又要足够坚固,能在月球六分之一的重力下支撑太阳能电池阵列。 Branch Technology公司在3D打印和先进材料方面的专业知识至关重要。团队正在探索使用月壤——月球表面松散、布满尘埃的土壤——作为建筑资源的方法。这种方法可以大幅减少从地球运输的材料量,在航天飞行中,每一克都至关重要。 “我们正在为一个外星世界设计建筑,”Branch Technology的发言人戴维·金(David […]

点亮月球:月球南极太阳能塔 Read More »

Architecture firm Foster + Partners unveils innovative lunar infrastructure design, collaborating with NASA and 3D printing pioneers Branch Technology. The concept illustrates essential power and communication systems required for sustainable lunar surface operations

Powering the Moon: The Lunar South Pole Solar Tower

Powering the Moon: The Lunar South Pole Solar Tower As humanity dreams of a permanent foothold beyond Earth, a visionary infrastructure project is lighting the way for our cosmic future. A Vision of Lunar Energy In the quest to establish sustainable outposts on other worlds, power generation stands as a formidable challenge. A bold new

Powering the Moon: The Lunar South Pole Solar Tower Read More »

Harnessing the power of motion: Scientists reveal how specially selected microscopic beads can convert everyday movements into electrical energy through friction, potentially revolutionizing wearable technology and offering new pathways for sustainable power generation.

微小运动大能量:吉米达尔博士(Dr. Ignaas Jimidar)揭示摩擦发电新时代

Self portrait, Image credit: Ignaas Jimidar, 微小运动大能量:吉米达尔博士(Dr. Ignaas Jimidar)揭示摩擦发电新时代 在可持续能源领域,科学家正利用创新的“摩擦纳米发电机”(TENGs)技术,从日常摩擦中获取电力。近期,比利时布鲁塞尔自由大学(VUB)的伊格纳斯·吉米达尔博士(Dr. Ignaas Jimidar)团队取得关键进展:他们发现使用特殊的三聚氰胺-甲醛微珠,能凭借其独特的物理特性,显著增强材料接触时的电荷转移效率,从而产生更强的电流。这项成果已于2025年2月5日发表在《Small》期刊上。 有趣的是,研究揭示了微珠尺寸与所带电荷的关系:较大的珠子倾向于带负电,较小的则带正电。通过优化微珠的大小和成分,团队在不依赖昂贵材料的情况下提升了能量产生效率。 这项技术为开发自充电可穿戴设备等应用开辟了新途径,不过在实际应用中,仍需克服可靠性和规模化生产方面的挑战。我们就此项工作与吉米达尔博士进行了交流。 故事起源 问:是什么激发了您探索利用微小塑料珠收集电能的兴趣?答:最初源于我们想开发一种不需要溶剂的“干法”组装技术,目标是用更可持续的方式来制造有序的微观结构。这种干法工艺速度很快——大约只需要20秒,而且容易扩大生产规模或实现自动化,不像传统的“湿法”工艺那样需要等待溶剂缓慢蒸发。在探索这项技术的应用时,我们与里加工业大学和墨尔本皇家理工大学研究摩擦纳米发电机(TENG)的同行进行了交流。我们意识到,我们制造的微粒结构本身就形成了摩擦发电所需的规整表面形态(拓扑结构),这正好可以替代传统上昂贵的压印或蚀刻等制造方法。这感觉是一个非常自然的结合点。 问:您的学术背景相当多元化,是如何开始研究这些微珠的?答:我的求学之路确实跨越了几个领域。我在苏里南学习机械工程起步,之后到荷兰攻读应用物理学和流体动力学。读博士时,我转向了化学工程领域,在一个项目中偶然接触到了粉末和微珠。这里面的物理现象非常吸引我:颗粒材料的研究与流体动力学有共通之处,但在粉末这样的微观尺度上,微粒间的表面力远比重力更重要,这和我们平时看到的宏观玻璃弹珠的行为很不一样。后来,为这些特别的材料开发无需溶剂的组装方法,更让我觉得兴味盎然。 Diagram illustrating the operational mechanism of triboelectric nanogenerator surfaces. Image credit: Ignaas Jimidar 科学理解 问:能简单解释一下这些微珠之间的摩擦是如何产生电力的吗?答:基本上就是我们日常生活中经历的静电现象,比如用气球摩擦头发——接触和摩擦导致了电荷在不同物体间转移。有趣的是,其精确的微观机制至今尚未被完全弄清楚。现有的理论包括电子转移、材料本身的微小转移,或者多种过程同时发生。像湿度这样的环境因素会极大地影响起电效果,增加了复杂性。最近的研究甚至挑战了一些旧的假设,《自然》杂志上的一项研究表明,即使是化学成分完全相同的材料,比如两块反复接触的硅胶,也能分别带上相反的电荷,这可能是由于表面极其细微的差异或接触方式的不对称造成的。 问:微珠带上正电荷还是负电荷是随机的,还是可以控制的?答:确实存在一定的随机性,尤其是在相同材料相互作用时,要解释为何一个表面会倾向于带正电,而另一个表面倾向于带负电,仍然很困难。你甚至可能在同一个表面上观察到不同电荷的“斑块”。不过,通过谨慎地选择不同材料进行搭配,我们通常可以大致控制它们的起电行为。但这种现象对环境非常敏感——湿度和温度都会影响电荷的产生和积累——这是实际应用中的一个主要障碍。 问:为什么特别选择三聚氰胺-甲醛微珠呢?答:老实说,最初是因为我们的供应商正好有现成的这种材料!但从科学角度来看,它们之所以有效,是因为三聚氰胺-甲醛作为一种聚合物,异常坚硬。当这种硬质微珠压在较软的材料上时,其刚性能增强表面的实际接触面积,从而显著提高充电效果。 问:量子物理原理在这种电荷形成中扮演了角色吗?答:有些研究人员确实从量子角度来探讨这个问题,研究电子能带结构以及接触过程中可能的电子俘获现象。然而,研究摩擦起电效应非常有挑战性,因为极其微小的表面变化,或者像一层薄薄的水膜这样的因素,都可能彻底改变结果,这使得分离和确认单一机制变得异常困难。 问:发现较大的珠子带负电、小珠子带正电,这对您的研究方法有何影响?答:这个发现直接影响了我们选择材料的策略。为了最大化电荷产生,我们意识到应该将具有互补特性的材料配对使用:用较硬的材料制作小尺寸微珠(以增强正电荷),同时用较软的材料制作大尺寸微珠(使其倾向于带负电荷)。这种组合能够放大材料间的电荷差异和电势差,从而提高功率输出。 Electron Microscope Image showing the surface of a Triboelectric Nanogenerator (TENG) with microscopic bead structures. Image credit: Ignaas Jimidar

微小运动大能量:吉米达尔博士(Dr. Ignaas Jimidar)揭示摩擦发电新时代 Read More »

Harnessing the power of motion: Scientists reveal how specially selected microscopic beads can convert everyday movements into electrical energy through friction, potentially revolutionizing wearable technology and offering new pathways for sustainable power generation.

Friction’s Electric Promise: Dr. Ignaas Jimidar on Powering the Future

Self portrait, Image credit: Ignaas Jimidar, Friction’s Electric Promise: Dr. Ignaas Jimidar on Powering the Future In a significant advancement for sustainable energy, scientists are harnessing electricity from friction using innovative triboelectric nanogenerators (TENGs). This technology captures energy from small scale motion when different surfaces interact. A key breakthrough involves using melamine-formaldehyde beads, whose unique

Friction’s Electric Promise: Dr. Ignaas Jimidar on Powering the Future Read More »

Foster and Partners (also Foster + Partners) is a British international architecture firm with its headquarters in London, UK

重塑传奇:福斯特+合伙人(Foster + Partners)展示英国曼联新球场愿景

Foster + Partners has revealed their visionary design for a new Manchester United Stadium as part of the Old Trafford neighborhood transformation. The architectural firm shared renderings showcasing not only the stadium itself but also the reimagined surroundings—featuring parks, mixed-use developments, an outdoor cinema, and an upgraded train station. These concept illustrations will guide upcoming

重塑传奇:福斯特+合伙人(Foster + Partners)展示英国曼联新球场愿景 Read More »

Foster and Partners (also Foster + Partners) is a British international architecture firm with its headquarters in London, UK

Reimagining a Legacy: Foster + Partners Presents Vision for New Manchester United Stadium

Foster + Partners has revealed their visionary design for a new Manchester United Stadium as part of the Old Trafford neighborhood transformation. The architectural firm shared renderings showcasing not only the stadium itself but also the reimagined surroundings—featuring parks, mixed-use developments, an outdoor cinema, and an upgraded train station. These concept illustrations will guide upcoming

Reimagining a Legacy: Foster + Partners Presents Vision for New Manchester United Stadium Read More »

Aurora Boreale, Lapponia, Finlandia by Roberto Sysa Moiola, Outdoor photographer, Italy

从阿尔卑斯山巅到北极风光:罗伯托·西萨·莫约拉(Roberto Sysa Moiola)的奇幻之旅

Self portrait, Image credit: Roberto Sysa Moiola 从阿尔卑斯山巅到北极风光:罗伯托·西萨·莫约拉(Roberto Sysa Moiola)的奇幻之旅 在这个被转瞬即逝的快照淹没的时代,意大利摄影师罗伯托·西萨·莫约拉(Roberto Sysa Moiola)却独树一帜,他所追寻的是偏远景观中那狂野的灵魂。从芬兰冰冻湖泊的晶莹闪烁,到挪威罗弗敦群岛的风暴肆虐悬崖,他的镜头捕捉到了地球未被驯服角落的原始壮丽与脆弱脉动。 最近,我们与他坐下来聊了聊,探寻他25年职业生涯背后的坚韧、美感与气候变迁。 Hiker man walking on empty road covered with ice during a storm, Barents Sea, Berlevag, Varanger Peninsula, Finnmark, Norway, Image credit: Roberto Sysa Moiola, 徒步者的镜头 莫约拉的旅程始于阿尔卑斯山,他一生的后院。”我最初是个热爱徒步的人,”他回忆道,”住在山里,我总在跋涉,那些惊艳的景色不断召唤我去拍摄。”起初只是为了定格记忆,逐渐演变成一种召唤,将他带向世界各地。 Man with snowshoes admiring the scenic sky at dawn over a winter forest covered with

从阿尔卑斯山巅到北极风光:罗伯托·西萨·莫约拉(Roberto Sysa Moiola)的奇幻之旅 Read More »

Aurora Boreale, Lapponia, Finlandia by Roberto Sysa Moiola, Outdoor photographer, Italy

From Alpine Peaks to Arctic Vistas: Roberto Sysa Moiola’s Odyssey Through Light and Landscape

Self portrait, Image caredit: Roberto Sysa Moiola From Alpine Peaks to Arctic Vistas: Roberto Sysa Moiola’s Odyssey Through Light and Landscape In an age drowning in fleeting snapshots, Italian photographer Roberto Sysa Moiola stands apart, chasing the wild soul of remote landscapes. From the icy shimmer of Finnish frozen lakes to the storm-lashed cliffs of

From Alpine Peaks to Arctic Vistas: Roberto Sysa Moiola’s Odyssey Through Light and Landscape Read More »

Highly porous tin foam, developed through specialized processing techniques. This material, shown in the image, was studied by an interdisciplinary team at HZB to evaluate its performance as a battery electrode.

锡泡沫电池电极内部演变:X射线成像的新发现

Dr. rer. nat. Sebastian Risse, Image credit: HZB Dr. Francisco Garcia-Moreno, Image credit: HZB 锡泡沫电池电极内部演变:X射线成像的新发现 科学家们发现,将锡转化为高孔隙率的泡沫结构或许能解决下一代电池面临的最大挑战之一。这一创新方法,来自柏林亥姆霍兹中心(HZB)的最新研究,可能为能量存储开辟新路,让相同体积容纳更多电量——想象一下,智能手机或电动车电池续航更持久。 超越石墨:金属电极的潜力 几十年来,锂离子电池依赖石墨电极在充放电时传递锂离子。石墨虽稳定,但其理论容量仅为372 mAh g⁻¹,促使研究者寻找更高能量密度的替代品。锡以993 mAh g⁻¹的理论容量——几乎是石墨的三倍——脱颖而出。“锡资源丰富、无毒,且能储存更多锂离子,”HZB的共同作者塞巴斯蒂安·里瑟博士(Dr. Sebastian Risse)说。这项研究已发表在《先进科学》上。然而,问题在于:锂离子进入时,锡体积膨胀高达260%,导致龟裂和性能衰退。 Schematic diagram illustrating the operando cell architecture used for discharge/charge experiments. The components include: (A) current collector, (B) Sn electrode, (C) Celgard separator, (D) lithium chip, (E-F) steel spacers, (G) steel

锡泡沫电池电极内部演变:X射线成像的新发现 Read More »

Highly porous tin foam, developed through specialized processing techniques. This material, shown in the image, was studied by an interdisciplinary team at HZB to evaluate its performance as a battery electrode.

Innovative Battery Electrode Made From Tin Foam: X-Ray Imaging Reveals Internal Evolution

Scientists have discovered that transforming tin into a highly porous foam structure may solve one of the biggest challenges facing next-generation batteries. This innovative approach, detailed in a recent study from Helmholtz-Zentrum Berlin (HZB), could pave the way for energy storage that packs significantly…

Innovative Battery Electrode Made From Tin Foam: X-Ray Imaging Reveals Internal Evolution Read More »